A Homology Theory for Hybrid Systems: Hybrid Homology

نویسندگان

  • Aaron D. Ames
  • S. Shankar Sastry
چکیده

By transferring the theory of hybrid systems to a categorical framework, it is possible to develop a homology theory for hybrid systems: hybrid homology. This is achieved by considering the underlying “space” of a hybrid system—its hybrid space or H-space. The homotopy colimit can be applied to this H-space to obtain a single topological space; the hybrid homology of an H-space is the homology of this space. The result is a spectral sequence converging to the hybrid homology of an H-space, providing a concrete way to compute this homology. Moreover, the hybrid homology of the H-space underlying a hybrid system gives useful information about the behavior of this system: the vanishing of the first hybrid homology of this H-space—when it is contractible and finite—implies that this hybrid system is not Zeno.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

Coordinated Control for Highly Reconfigurable Systems

Operational semantics of hybrid systems p. 25 SOS methods for semi-algebraic games and optimization p. 54 The discrete time behavior of lazy linear hybrid automata p. 55 Perturbed timed automata p. 70 A homology theory for hybrid systems : hybrid homology p. 86 Observability of switched linear systems in continuous time p. 103 Controller synthesis on non-uniform and uncertain discrete-time doma...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

Hybrid alignment: high-performance with universal statistics

The score statistics of a recently introduced 'hybrid alignment' algorithm is studied in detail numerically. An extensive survey across the 2216 models of protein domains contained in the Pfam v5.4 database (Bateman et al., Nucleic Acids Res., 28, 263-266, 2000) verifies the theoretical predictions: For the position-specific scoring functions used in the Pfam models, the score statistics of hyb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005